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ABSTRACT 

Accurate and real-time measurement of tractor drive wheel slip ratio under plowing conditions is essential for 

improving overall machine performance and tillage quality. To address the limitations of existing methods—

namely low measurement accuracy, poor anti-interference capability, and low efficiency—this study proposes 

an online slip ratio measurement method based on multi-sensor fusion and adaptive filtering. A real-time 

measurement system was developed by integrating GNSS, IMU, and wheel encoders. Furthermore, a lens-

based quasi-oppositional learning strategy and a good-point-set initialization mechanism were introduced to 

enhance the mayfly algorithm, which was then used to optimize a parallel Kalman filter, forming the improved 

mayfly algorithm–parallel Kalman filter (IMA-PKF). This approach enables adaptive real-time adjustment to 

random noise disturbances encountered during plowing operations, thereby enhancing robustness. Simulation 

results show that under non-interference conditions, the IMA-PKF algorithm achieves a root mean squared 

error (RMSE) of 0.0214, representing a 74.8% reduction compared with the conventional KF algorithm. In 

addition, compared with PSO-PKF and MA-PKF, the RMSE accuracy is improved by approximately 62.23% 

and 49.41%, respectively. When disturbance points are introduced, IMA-PKF still maintains the lowest 

estimation error, with an RMSE of 0.0359, demonstrating excellent stability and anti-interference capability. 

Field experiments under different plowing depths further validate the robustness of the method: the maximum 

slip ratio measurement error is only 1.94%, with bias controlled within 2%. Compared with KF, the proposed 

method reduces mean absolute error (MAE) and RMSE by up to 36.29% and 37.06%, respectively. Overall, 

the IMA-PKF algorithm enables accurate and stable online measurement of tractor drive wheel slip ratio under 

diverse plowing conditions, providing a solid theoretical and technical foundation for improving tractor 

performance and operational efficiency. 

摘要 

犁耕工况下拖拉机驱动轮滑转率的在线准确测量对提升拖拉机作业性能和犁耕质量具有重要意义。为解决当前犁耕工况下

拖拉机滑转率滑转率测量精度低、抗干扰能力差、测量效率低等问题，本文提出一种基于多传感器融合与自适应滤波的拖拉

机滑转率在线测量方法。首先，本文利用 GNSS、IMU 与轮速编码器等多源传感器搭建了拖拉机滑转率在线测量系统。然

后，引入基于透镜成像的准对立学习策略与优点集初始化机制，构建了基于改进蜉蝣算法优化的并行卡尔曼滤波算法（IMA-

PKF），实现了犁耕作业随机噪声扰动的自适应实时调整，增强了算法对犁耕工况的鲁棒性。仿真结果表明，无干扰条件下，

IMA-PKF 算法下滑转率的估计值 RMSE 为 0.0214，较传统 KF 降低 74.8%，优于 PSO-PKF 和 MA-PKF，分别提升 62.23%、

49.41%；引入扰动点后， RMSE 仅为 0.0359，具有良好的稳定性与抗干扰能力。田间试验结果进一步验证了该方法在不

同耕深工况下的鲁棒性，滑转率测量值最大误差仅 1.94%，偏差控制 2%以内，较 KF 算法下的 MAE 和 RMSE 分别降低

36.29%与 37.06%。综上，IMA-PKF 算法实现了不同犁耕工况下拖拉机驱动轮滑转率的在线准确测量，为提升拖拉机整机

性能和作业效率奠定了理论基础和技术支撑。 

 

 

INTRODUCTION 

Slip ratio is a critical parameter for evaluating tractor traction performance and operational efficiency 

(Pranav et al., 2012; Zhang et al., 2025). Both excessively low and high slip ratio adversely affect traction, 

reducing efficiency and posing safety risks (Du et al., 2024; Xia et al., 2021). Therefore, accurately measuring 

the slip ratio is essential for improving the level of tractor performance and operational effectiveness (Raheman 

& Jha, 2007). 
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The accuracy of tractor slip ratio depends on precise measurement of theoretical and actual tractor 

speeds (Shoutao Li et al., 2024). However, complex field conditions introduce various noise interferences. 

Traditional methods, such as the fifth-wheel and minimum wheel speed methods, are susceptible to ground 

undulations and thus unsuitable for complex agricultural environments. Single encoder-based measurements 

suffer from white noise and unmeasurable disturbances (Boisvert & Micheau, 2016). GPS-based speed 

measurement can also fail under conditions such as canopy occlusion or cloud cover. Consequently, single-

sensor systems cannot ensure high-accuracy real-time measurement under diverse conditions. Multi-sensor 

data fusion has emerged to enhance slip ratio estimation accuracy (Cao et al., 2015; Han et al., 2023; Peng 

et al., 2025; Wang et al., 2021). The key to such fusion lies in the design of an appropriate state estimation 

algorithm. Among existing techniques, the Kalman filter (KF) is widely used in vehicle state estimation due to 

its excellent dynamic estimation capability and noise suppression performance (Bisht & Singh, 2014; Deng et 

al., 2024; Suzuki, 2013). However, KF accuracy heavily depends on properly specified process and 

measurement noise covariance matrices. Sensor noise in agricultural environments often exhibits time-varying, 

delayed, and stochastic behaviors, complicating accurate modeling (De Bruijn & Gill, 2014). Moreover, 

standard KF applies unified observation modeling across sensors, neglecting their distinct characteristics and 

reducing estimation accuracy. In contrast, the Parallel Kalman Filter (PKF) framework allows for constructing 

independent observers for each sensor, enabling separate filtering and fusion of estimation results. This not 

only improves estimation precision but also enhances system robustness. PKF has been widely applied in 

domains such as train state estimation (Wen et al., 2023), multi-target tracking, and autonomous navigation 

(Liu et al., 2024; Xiong et al., 2020), demonstrating strong robustness and adaptability. To further enhance the 

robustness of the Kalman filter in noisy and dynamic environments, various adaptive optimization methods 

have been proposed in recent years by researchers both domestically and internationally. For example, Sun 

improved the innovation-based adaptive Kalman filter by incorporating chi-square testing to dynamically adjust 

measurement noise covariance and reject abnormal measurements, enhancing the stability and accuracy of 

INS/GPS integration (Sun et al., 2022). Li developed a GA-LSTM-based framework that identifies the current 

road surface condition in real time and dynamically adjusts the noise covariance matrices of the KF accordingly 

(Shaohua Li et al., 2024). In another study, Li applied a particle swarm optimization (PSO) algorithm to 

adaptively tune the environmental noise parameters of the KF, thereby improving its prediction accuracy (Li et 

al., 2022). Although these methods have shown improvements in the adaptability of the KF to some extent, 

they still suffer from several limitations, such as complex parameter tuning processes, insufficient real-time 

performance, and limited robustness under highly variable environmental conditions. 

Given the above, A slip ratio of tractor drive wheels online measurement based on Improved Mayfly 

Algorithm-Parallel Kalman Filter (IMA-PKF) was proposed in this paper. The method adaptively adjusts filter 

parameters via online estimation of noise covariance matrices and fuses multi-sensor data from tractor slid 

ratio online measurement system through a parallel Kalman filtering framework. And it is possible to achieve 

real-time, accurate and robust online measurement of the tractor slip ratio under complex plowing conditions. 

MATERIALS AND METHODS 

Tractor Slip Ratio Measurement System and Modeling 

The system state model characterizes the dynamic behavior of the tractor slip ratio measurement 

system. In this study, the sideslip angle is not considered, and only longitudinal slip is taken into account. The 

system state includes the actual vehicle speed, the longitudinal acceleration of the vehicle body, and its rate 

of change, x(k) is defined as: 

T( ) [ ( ) ( ) ( ) ( ) ( ) ( )]e e e q q qk v k a k a k v k a k a k =x        （1） 

where: ve(k) denotes the actual vehicle speed at time step k, m/s, ae(k) is the vehicle body acceleration, m/s²; 

ae´(k) represents the rate of change of the acceleration, m/s³, vq(k) is the theoretical vehicle speed, m/s, aq(k) 

denotes the theoretical acceleration, m/s², and aq´(k) is the rate of change of the theoretical acceleration, m/s³. 

k is the discrete-time index, and the superscript T denotes the matrix transpose. 

 

The linear system state transition equation is given by: 

( )( 1) ( )k k k+ =  +x A x w             （2） 
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where A is the state transition matrix, defined as: 
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A , where ∆t is the sampling time 

interval, w(k) is zero-mean Gaussian white noise with a covariance matrix Q, and denotes the uncertainty in 

the system. 

To improve the estimation accuracy of the tractor drive wheel slip ratio, a Parallel Kalman Filter (PKF) 

structure is adopted, consisting of two independent observers, Z1 and Z2, which process measurements from 

Global Navigation Satellite System (GNSS), photoelectric encoders, and the Inertial Measurement Unit (IMU), 

respectively. The PKF approach enables separate local estimations at each observer node using its own 

sensor data, and these local estimates are subsequently fused to obtain a global state estimate (Hashemipour 

et al., 1988). The final optimal estimate is obtained through weighted fusion of the two observers. The 

observation vector Z1(k) and Z2(k) are defined as: 

T
1

T
2

( ) [ ( ) ( ) 0 ( ) ( ) 0]

( ) [ ( ) ( ) 0 ( ) ( ) 0]

qe qe te te

qg qe te te

k v k a k v k a k

k v k a k v k a k

 =


=

Z

Z
      （3） 

where, vqe(k) denotes the actual vehicle speed measured by the encoder, m/s, aqe(k) is the measured 

acceleration signal of the vehicle body, m/s², vte(k) represents the theoretical vehicle speed measured by the 

encoder, m/s, ate(k) is the acceleration signal measured at the drive wheel, m/s², and vqg(k) denotes the actual 

speed measured by the GPS, m/s. 

The observation model is given by: 

( )( ) ( )       =1,2i i ik k k i=  +Z H X y        （4） 

where, H=diag(1, 1, 0, 1, 1,0) is the observation matrix, and the measurement noise yi(k) is zero-mean Gaussian 

white noise with a covariance matrix Ri. 

The update process of the parallel Kalman filter can be divided into the following steps: 

( ) ( )ˆ ˆ| 1 1| 1i ik k k k− =  − −X A X        （5） 

( ) ( ) ( )| 1 1| 1 1T
i ik k k k k− =  − − + −P A P A Q      （6） 

( ) ( ) ( ) ( )
1

| 1 | 1 1T T
i i i ik k k k k k

−
 = −    −  + +
 

K P H H P H R   （7） 

( ) ( ) ( )| | 1i i ik k k k k= −   −  P I K H P       （8） 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ| | 1 | 1i i i i ik k k k k k k k = − +  −  −
 

X X K Z H X   （9） 

The state estimates from the two filters are fused through weighted averaging to obtain the global 

estimated state ˆ ( | )g k kX : 

1 1 2 2
ˆ ( | ) ( | ) ( | )g k k k k k k=  + X W X W X      （10） 

where, X
^

i(k|k-1) denotes the predicted state at time step k based on information available up to time k-1, while 

X
^

i(k|k) represents the updated estimate at time step k after incorporating the measurement at time k. Pi(k|k-1) 

is the a priori estimation error covariance matrix, and Pi(k|k) is the a posteriori estimation error covariance 

matrix. Ki(k) represents the Kalman gain matrix. W1 and W2 represent the weighting matrices assigned to the 

two local Kalman filters during the state fusion process. These weights are determined based on the inverse 

of the corresponding a posteriori error covariance matrices. The weighting expression is defined as:
1 1 1 1

1 2( ) , 1,2i i i− − − −= +  =W P P P . 

IMA-PKF Algorithm 

Real-time tractor slip ratio estimation often relies on the fusion of multi-source sensor data, where the 

characteristics of measurement and process noise tend to be nonlinear and time-varying. These noise sources 

critically affect the accuracy of Kalman filter estimation. Conventionally, the selection of noise covariance 
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matrices Q and R depends on empirical tuning, trial-and-error methods, or offline experiments. However, such 

approaches assume prior statistical knowledge of the noise characteristics, which may not be valid in dynamic 

field conditions. Inappropriate choices of Q and R can lead to sluggish filter responses or even divergence of 

the estimation. To enhance adaptivity and robustness, this study introduces a mayfly algorithm-based 

approach to dynamically optimize the noise covariance matrices in the Kalman filter. The algorithmic framework 

of the proposed IMA-optimized PKF is illustrated in Fig. 1. 

IM
A

Start iteration

Initialization of parameters 

such as population size and 

maximum number of 

iterations

Initialize the population 

positions using a good point 

set and calculate the fitness of 

all individuals. Update the velocities and 

positions of female and male 

mayflies, and update the 

ranking of mayflies based on 

fitness.

Apply the lens-based 

opposition learning strategy 

and greedy mechanism to 

select the optimal mayfly 

individuals.

The superior male and female 

mayflies undergo crossover 

mating to obtain the global 

optimal solution.

Determine whether the 

population has reached the 

optimal value or the maximum 

number of iterations.

Output the optimal Q and Ri , i=1,2

Initialize the initial value 

x0 and the covariance 

matrix P0.

The current mayfly 

individual's 

corresponding Q And Ri 

matrix parameters.

Calculate FPMSE and 

TPMSE.

Calculate the fitness 

value f

Obtain the global 

estimated value           1  

through weighted fusion.

N

Y

P
K
F

Compute Z1 via Kalman Filter 1

Compute Z2 via Kalman Filter 2

Parallel Kalman Filtering

 
Fig.1 - IMA-PKF Algorithm Flowchart 

 

Improved Mayfly Algorithm 

The Mayfly Algorithm (MA) is a swarm intelligence optimization method inspired by the social behavior 

of mayflies (Lizarraga et al., 2025; Zervoudakis & Tsafarakis, 2020). It features good population diversity and 

strong local search ability, with high extensibility for domain-specific adaptations. However, MA often suffers 

from weak global exploration in early stages and reduced solution accuracy and stability in later stages, leading 

to premature convergence or entrapment in local optima. To overcome these drawbacks, this study introduces 

improvements in population initialization and the search mechanism. 

(1) Good Point Set Initialization Strategy 

The initial position of each mayfly individual refers to a point in a D-dimensional search space and is 

expressed as a vector of real-valued decision variables. Specifically, the position of the i-th individual is defined 

as 1 2[ , ,..., ]k D
i i i ix x x x=  , where xᵢᵏ denotes the value of the k-th coordinate (k = 1, 2, ..., D) of the i-th mayfly 

individual (i = 1, 2, ..., N), D is the problem dimension, and N is the population size. Each coordinate is a 

dimensionless variable representing a component of the optimization solution. 

The initial positions are generated using the following formula: 

( )k
i k k kx a rand b a= + −         （11） 

where aₖ and bₖ are the lower and upper bounds of the k-th dimension, and rand() is a uniform random number 

generator that produces values in the interval [0, 1]. 

Although the initial positions are generated using uniform random sampling within the defined bounds 

of the search space, the resulting distribution of individuals may still be uneven. As illustrated in Fig. 2(a), such 

randomness can lead to poor space utilization and a higher likelihood of premature convergence to local 

optima. To overcome this limitation, a good point set initialization strategy is introduced to improve the 

uniformity of the population distribution. The improved initialization method is defined as follows: 
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( ) ( )k
i k n k kx a P k b a= + −        （12） 

where Pn(k) represents the good point set. 

As illustrated in Fig. 2(b), the initialization method based on the good point set effectively avoids the 

randomness and local clustering inherent in traditional random initialization, thereby enhancing the global 

search capability of the MA. 

              
（a）                         （b） 

Fig. 2 - Initialization of mayfly 

(a)Random Initialization；(b)Good Point Set Initialization 

 

(2) Lens Imaging-Based Opposition Learning Strategy 

To mitigate premature convergence and local optima entrapment in the mayfly population, this study 

introduces a lens imaging-based opposition learning strategy (Yu et al., 2024). aimed at enhancing population 

diversity and expanding exploration of the solution space. 

This strategy is inspired by the optical imaging principle of a convex lens. Considering a bounded search 

interval [lb, ub], there exists an individual P with a height of h, whose projection on the X-axis is denoted by X 

(which represents the current global optimal solution). Let the reference point O be the midpoint of the interval, 

and a convex lens with focal length F is placed at O. According to the principle of convex lens imaging, the 

individual P is projected through the lens to form an inverted image P*, with height h* and a projection on the 

X-axis denoted as X*. Based on convex lens imaging theory, the following relationship can be established: 

( )

( )*

/ 2

/ 2

ub lb X

X ub lb


+ −
=

− +
       （13） 

where, 𝜂 is the scaling factor, *
h

h
 = . 

The opposition point can be computed as: 

*

2 2

ub lb ub lb X
X

 

+ +
= + −


       （14） 

By adjusting the scaling factor η, the opposition solution can be dynamically varied, thereby enhancing 

the algorithm's local exploitation capability. In conventional lens imaging-based opposition learning strategies, 

η is constant, which limits the ability to effectively expand the population's search range. To address this 

limitation, this study introduces a Logistic chaos-based dynamic scaling strategy, in which the adaptive chaotic 

scaling factor is calculated as: 

( )min max min tx   = + −        （15） 

where xt is a dynamic value generated by the Logistic chaotic map, updated as: xt+1=r·xt·(1- xt), The index t 

denotes discrete time steps and takes integer values t = 0,1,2,…, N, where N is the total number of iterations. 

Here, r is the chaos control parameter, set to 4, and xt ∈(0,1). 

A greedy selection mechanism is further introduced to evaluate and retain improved individuals 

generated through the opposition learning process. The mathematical model of the greedy selection is 

expressed as: 
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* *

*

,   ( ) ( )
( )

 ,   ( ) ( )
new

X f X f X
X t

X f X f X

 
= 



      （16） 

where f( ) denotes the fitness function that quantifies the quality or objective value of an individual solution 

and evaluates the performance level of each candidate solution X under the optimization objective. 

 

Noise Adaptation Based on the Improved Mayfly Algorithm 

In the Parallel Kalman Filter (PKF), the process noise covariance matrix Q and the measurement noise 

covariance matrix R are critical parameters that directly affect the accuracy and stability of state estimation. 

However, in practical applications, conventional Kalman filtering often suffers from inaccurate modeling and 

unknown or time-varying noise statistics, making it difficult to determine appropriate values for these matrices. 

Traditional Kalman filters typically assume that Q and R are constant, but such an assumption often fails to 

meet the requirements of real-world scenarios. Inappropriate settings may result in sluggish filter response, 

increased estimation bias, or even filter divergence. To ensure unbiased estimation and filter stability, it is 

essential to select appropriate values for the process and measurement noise covariance matrices. Therefore, 

a dynamic adjustment mechanism based on the Improved Mayfly Algorithm (IMA) is introduced to optimize Q 

and R in real time, thereby enhancing the adaptive capability of the Kalman filter. 

Let Qu and Ru denote the process noise covariance and measurement noise covariance matrices actually 

used by the Kalman filter, respectively: 

u

u

= + 


= + 

Q Q Q

R R R
        （17） 

where Q and R are the true process and measurement noise covariance matrices, and ∆Q and ∆R represent 

the deviations of the applied matrices from the true values. 

The True Mean Squared Error (TMSE) and the Filter Calculated Mean Squared Error (FMSE) are 

typically introduced as evaluation metrics When TMSE closely matches FMSE, the estimated covariances Qu 

and Ru are more consistent with the true noise characteristics Q and R. However, due to the fact that the noise 

covariance is generally unknown or there is model bias, it is quite difficult to directly calculate the TMSE and 

FMSE. So, the Filter Calculated Prediction Mean Squared Error (FPMSE) and the True Prediction Mean 

Squared Error (TPMSE) are introduced as alternative indicators to estimate the system errors online, providing 

a practical basis for evaluating filter performance under unknown noise conditions (Ge et al., 2023; Ge et al., 

2016). The TPMSE is calculated as follows: 

( )1| 1 , 1

1

1 k
m m T T T
zk k k k k k k k i i

ik
− − −

=

= + +  p H AP A Q H R e e                （18） 

where ek denotes the innovation at time step k， ( )ˆ( ) | 1k k k k= −  −e Z H X . 

The FPMSE is calculated as follows: 

| 1
f f T u

k kzk k kP −= +P H H R                           （19） 

To ensure optimal filter performance, the fitness function of the improved mayfly algorithm is defined as 

the minimum 2-norm of the difference between FPMSE and TPMSE: 

( ) ( )2min || ||f m
zkzkf k = −P P                          （20） 

Online measurement system of tractor slip ratio 

In order to verify the effectiveness and feasibility of the proposed algorithm, an online measurement 

system was established, which was installed on the tractor ploughing unit as shown in Fig.3.  

The system primarily consists of photoelectric encoders, a combined inertial navigation mobile station 

(including GNSS and IMU), a laser ranging sensor, an inclination sensor, a USB-6210 data acquisition card, 

and an upper computer. The actual vehicle speed was estimated by fusing the front wheel speed measured 

by the encoder with the GNSS speed. The theoretical vehicle speed was derived from the rear wheel speed 

captured by the encoder, reflecting the motion of the driven wheel. The upper computer was used to deploy 

the algorithm proposed in this paper, and the platform was later used for field experiments to verify its 

effectiveness under real-world working conditions. The system integrates multi-sensor fusion technology and 

real-time computing capabilities, providing a solid foundation for the deployment of the proposed algorithm and 

the evaluation of its measurement performance under complex plowing conditions. 
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Front Wheel Encoder  

OMRON E6B2

 RTK Base Station

Laser Ranging Sensor 

WT-VL53L0

 
Fig. 3 - Tractor Slip Ratio Acquisition System 

 

RESULTS AND DISCUSSIONS 
Simulation Analysis 

To verify the effectiveness of the proposed algorithm, simulated measurement signals were generated 

in MATLAB based on typical plowing operation conditions. The tractor working speed was assumed to vary 

within the range of 1 to 3 m/s, which covers the majority of practical plowing speeds. A portion of the simulated 

signals is shown in Fig. 4. All signals were corrupted with zero-mean Gaussian white noise with a standard 

deviation equal to 5% of the signal amplitude. The measurement noise covariance matrices were defined as: 

R1=diag(0.12, 0.062, 0, 0.112, 0.062, 0), R2=diag(0.132, 0.062, 0, 0.112, 0.062, 0). The simulation time was 30 s with a 

sampling frequency of 50 Hz. KF, Particle Swarm Optimization-based Parallel Kalman Filter (PSO-PKF), MA-

PKF, and the IMA-PKF were selected to estimate the slip ratio. The simulation comparison results are shown 

in Fig. 5.  

 

 
(a)                                   (b) 

  
(c) 

Fig. 4 - Simulated Sensor Measurement Signals s 

(a) GPS speed; (b) Front encoder speed; (c) Rear encoder speed 
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(a)                                                        (b) 

 
(c)                                                    (d) 

Fig. 5 - Comparison of Slip Ratio Signals from Different Algorithms 

(a)KF; (b)PSO-PKF; (c)MA-PKF; (d)IMA-PKF 

 

As shown in Fig. 5, there are significant differences in slip ratio estimation accuracy among 4 algorithms. 

The mean absolute errors (MAE) of KF, PSO-PKF, MA-PKF, and IMA-PKF are 0.0714, 0.0433, 0.0348, and 

0.0202, respectively, while the corresponding root mean squared errors (RMSE) are 0.0848, 0.0567, 0.0423, 

and 0.0214. Compared with the original KF algorithm, both MAE and RMSE are reduced in PSO-PKF, MA-

PKF, and IMA-PKF. Specifically, the MAE of MA-PKF and PSO-PKF is reduced by 39.3% and 51.3%, 

respectively, and the RMSE is reduced by 33.1% and 50.1%. The IMA-PKF algorithm achieves the best 

performance, with MAE and RMSE reduced by 71.7% and 74.8%, respectively, relative to KF, demonstrating 

the most effective error suppression. From the results, although the slip ratio estimated by the KF algorithm 

generally follows the trend of the reference signal, it exhibits noticeable fluctuations at certain time. In contrast, 

the estimates from the MA-PKF and PSO-PKF algorithms are smoother and more stable, with reduced errors 

and more uniform error distribution. The IMA-PKF algorithm yields the most accurate estimation results, 

effectively suppressing noise and providing higher measurement precision. 

To further assess the anti-interference robustness of the IMA-PKF under diverse and realistic 

perturbation scenarios, a Monte Carlo simulation comprising 100 independent trials was conducted. In each 

trial, 5 transient disturbances were superimposed onto the actual vehicle speed signal to emulate unpredictable 

field conditions. These disturbances were constructed using half-sine waveforms with randomly sampled 

parameters. Specifically, injection times were drawn from Gaussian distributions centered at 6 s, 10 s, 15 s, 

20 s, and 25 s, while amplitudes and frequencies were sampled from uniform distributions within ±0.4-0.8 m/s 

and 4.5-5.5 Hz, respectively. Each disturbance lasted for 0.2 s. This randomized design was intended to mimic 

non-stationary and transient noise sources such as terrain shocks or sporadic sensor anomalies. All four 

algorithms were tested under these conditions to evaluate their estimation consistency and robustness. 

A representative example of the disturbed GPS-measured vehicle speed signal is shown in Fig. 6, while 

Fig. 7 compares the resulting slip ratio estimation errors under the 100 Monte Carlo trials.  

 

 
    Fig. 6 - GPS Vehicle Speed with Disturbances       Fig. 7 - Comparison of Absolute Slip Ratio Errors 
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The mean absolute error (MAE) values for KF, PSO-PKF, MA-PKF, and IMA-PKF were 0.0723, 0.0721, 

0.0438, and 0.0282, respectively; the corresponding RMSE values were 0.0795, 0.0865, 0.0589, and 0.0359; 

and the maximum absolute errors reached 0.6262, 0.3977, 0.2701, and 0.1464, respectively. These results 

indicate that while PSO-PKF improved robustness over the conventional KF, it remained sensitive to severe 

disturbances. MA-PKF exhibited better stability and denoising capacity, but IMA-PKF consistently delivered 

the most accurate and reliable performance across all trials, demonstrating superior resistance to transient 

interference and enhanced estimation robustness. 

 

Field Experiment Results and Discussion 

To validate the performance and reliability of the proposed algorithm, field experiments were carried out 

under actual plowing conditions at the Technology Demonstration Base of Shandong Agricultural University. 

The experimental setup included the Taishan-1404A tractor and 1LF-435 reversible plough, and the main 

parameters are summarized in Table 1. During the experiment, RTK-GNSS was employed as the reference 

measurement device to validate the effectiveness of the proposed algorithm in estimating the tractor slip ratio. 

The laser ranging sensor and inclination sensor were used to monitor the tillage depth. To ensure consistent 

operation and realistic evaluation across varying working depths, the throttle opening was kept constant during 

each test, and the resulting average plowing speeds were approximately 6.48 km/h (15 cm), 5.83 km/h (20 

cm), 5.44 km/h (25 cm), and 5.04 km/h (30 cm), respectively. 

Table 1  

Main Parameters of the Experimental Tractor and Plough 

Equipment Name Parameter Value 

Taishan-1404A tractor 

Overall Dimensions (L×W×H) [mm] 5000×2510×3115 

Wheelbase [mm] 2550 

Rated Power [kW] 103 

Maximum Drawbar Pull [kN] 28 

Minimum Operating Weight [kg] 5260 

1LF-435 reversible plough 

Overall Dimensions (L×W×H) [mm] 4000×1600×1850 

Total Weight [kg] 1470 

Number of Plough Bodies 4×2 

Working Width per Share [mm] 350 

Maximum Working Depth [cm] 35 

 

 

The experimental field measured 200 m in length and 300 m in width. The length of each ploughing 

operation in the experiment was approximately 200 m. Since the field had been previously plowed, compaction 

treatment was applied to meet the experimental requirements. To investigate the algorithm’s performance 

under varying tillage depths, the field was divided into four subplots, each assigned a specific working depth: 

15 cm, 20 cm, 25 cm, and 30 cm. During the experiments, the tractor was driven in a straight line with the 

differential lock engaged. Once the reversible plow reached the target depth, the throttle opening was 

maintained at a constant level. The field tests were conducted under ambient temperatures ranging from 12 °C 

to 18 °C, with weather conditions transitioning from light rain to overcast skies. As shown in Fig. 8, all field 

experiments were carried out under realistic tillage conditions in the prepared test area. 

The advantages of IMA-PKF over PSO-PKF and MA-PKF have been verified through simulation 

experiments. Due to the limitations of the plot size and the complexity of the algorithm calculation, only the 

IMA-PKF algorithm and the original KF algorithm were selected for comparison.  

Fig.9 presents the comparison of tractor slip ratio estimation results under 4 plowing conditions using 

the IMA-PKF and KF algorithms. The measured values and reference values exhibit similar trends, indicating 

that the IMA-PKF algorithm can accurately track the dynamic changes in slip ratio. The algorithm provides 

estimates that closely match the actual values and demonstrates good stability. It is worth noting that the 

sudden increase in slip ratio observed in Fig. 9(c) during the later stage of the operation is likely caused by 

external disturbances, such as the plow encountering rocks during the tillage process. The mean absolute 

error (MAE) and root mean squared error (RMSE) of the slip ratio estimated by both the IMA-PKF and KF 

algorithms are shown in Fig. 10. 
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Fig. 8 - Field Test Site 

 

  
(a)                                              (b) 

    
(c)                                            (d) 

Fig. 9 - Experimental Slip Ratio Estimation Curves 

(a) Tillage Depth: 15 cm; (b) Tillage Depth: 20cm; (c) Tillage Depth: 25cm; (d) Tillage Depth: 30cm 

 

  
Fig. 10 - Statistical Results of Experimental Data 

 

As shown in Fig. 10, under all four tillage depth conditions, the proposed IMA-PKF algorithm 

demonstrates significantly improved performance compared to the conventional KF algorithm. Specifically, the 

MAE of the IMA-PKF algorithm is reduced by 33.95%, 34.35%, 36.29%, and 27.47%, respectively, while the 

RMSE is reduced by 34.67%, 34.42%, 37.06%, and 22.60%, respectively. These experimental results confirm 

that the IMA-PKF algorithm exhibits superior measurement performance under complex operating conditions 

and can effectively improve the accuracy of tractor slip ratio estimation. While the proposed IMA-PKF algorithm 

exhibits strong performance under the tested conditions, further validation is needed to assess its general 

applicability across various soil types, equipment configurations, and operating scenarios, particularly in highly 

resistant or hard soils. 
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CONCLUSIONS 

(1) A tractor slip ratio online measurement method was proposed in the paper. This method is based on 

the improved firefly algorithm optimized parallel Kalman filter (IMA-PKF). By integrating data from multiple 

sensors and adaptively estimating noise, this method can dynamically adapt to changes in noise and achieve 

online accurate measurement of tractor slip ratio under different plowing conditions. 

(2) Simulation results show that under non-interference conditions, the IMA-PKF algorithm achieves a 

root mean squared error (RMSE) of 0.0214, which is 74.8% lower than that of the conventional KF algorithm, 

and it also outperforms PSO-PKF and MA-PKF in terms of estimation accuracy. In terms of anti-interference 

capability, the IMA-PKF algorithm maintains the lowest estimation error even after the introduction of 

disturbance points, with an RMSE of 0.0359, demonstrating superior stability and robustness. 

(3) A set of online measurement system for tractor slip ratio was established. And field experiments have 

confirmed that the estimated slip ratio measured by IMA-PKF are highly consistent with the reference values, 

with the maximum error being only 1.94% and the deviation being less than 2%. Under different tillage depths, 

compared with KF, IMA-PKF reduces the average absolute error (MAE) and root mean square error (RMSE) 

by up to 36.29% and 37.06% respectively, demonstrating its reliability under complex conditions and providing 

support for the improvement of tractor performance.  

In future work, the test scope will be expanded to include different soil conditions such as harder or more 

resilient soils, various humidity levels, as well as different tractor types and farm implements. This will help 

verify the reliability and adaptability of the IMA-PKF algorithm under complex operating conditions. 
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