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ABSTRACT

Accurate and real-time measurement of tractor drive wheel slip ratio under plowing conditions is essential for
improving overall machine performance and tillage quality. To address the limitations of existing methods—
namely low measurement accuracy, poor anti-interference capability, and low efficiency—this study proposes
an online slip ratio measurement method based on multi-sensor fusion and adaptive filtering. A real-time
measurement system was developed by integrating GNSS, IMU, and wheel encoders. Furthermore, a lens-
based quasi-oppositional learning strategy and a good-point-set initialization mechanism were introduced to
enhance the mayfly algorithm, which was then used to optimize a parallel Kalman filter, forming the improved
mayfly algorithm—parallel Kalman filter (IMA-PKF). This approach enables adaptive real-time adjustment to
random noise disturbances encountered during plowing operations, thereby enhancing robustness. Simulation
results show that under non-interference conditions, the IMA-PKF algorithm achieves a root mean squared
error (RMSE) of 0.0214, representing a 74.8% reduction compared with the conventional KF algorithm. In
addition, compared with PSO-PKF and MA-PKF, the RMSE accuracy is improved by approximately 62.23%
and 49.41%, respectively. When disturbance points are introduced, IMA-PKF still maintains the lowest
estimation error, with an RMSE of 0.0359, demonstrating excellent stability and anti-interference capability.
Field experiments under different plowing depths further validate the robustness of the method: the maximum
slip ratio measurement error is only 1.94%, with bias controlled within 2%. Compared with KF, the proposed
method reduces mean absolute error (MAE) and RMSE by up to 36.29% and 37.06%, respectively. Overall,
the IMA-PKF algorithm enables accurate and stable online measurement of tractor drive wheel slip ratio under
diverse plowing conditions, providing a solid theoretical and technical foundation for improving tractor
performance and operational efficiency.
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INTRODUCTION

Slip ratio is a critical parameter for evaluating tractor traction performance and operational efficiency
(Pranav et al., 2012; Zhang et al., 2025). Both excessively low and high slip ratio adversely affect traction,
reducing efficiency and posing safety risks (Du et al., 2024; Xia et al., 2021). Therefore, accurately measuring
the slip ratio is essential for improving the level of tractor performance and operational effectiveness (Raheman
& Jha, 2007).
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The accuracy of tractor slip ratio depends on precise measurement of theoretical and actual tractor
speeds (Shoutao Li et al., 2024). However, complex field conditions introduce various noise interferences.
Traditional methods, such as the fifth-wheel and minimum wheel speed methods, are susceptible to ground
undulations and thus unsuitable for complex agricultural environments. Single encoder-based measurements
suffer from white noise and unmeasurable disturbances (Boisvert & Micheau, 2016). GPS-based speed
measurement can also fail under conditions such as canopy occlusion or cloud cover. Consequently, single-
sensor systems cannot ensure high-accuracy real-time measurement under diverse conditions. Multi-sensor
data fusion has emerged to enhance slip ratio estimation accuracy (Cao et al., 2015; Han et al., 2023; Peng
et al., 2025; Wang et al., 2021). The key to such fusion lies in the design of an appropriate state estimation
algorithm. Among existing techniques, the Kalman filter (KF) is widely used in vehicle state estimation due to
its excellent dynamic estimation capability and noise suppression performance (Bisht & Singh, 2014; Deng et
al., 2024; Suzuki, 2013). However, KF accuracy heavily depends on properly specified process and
measurement noise covariance matrices. Sensor noise in agricultural environments often exhibits time-varying,
delayed, and stochastic behaviors, complicating accurate modeling (De Bruijin & Gill, 2014). Moreover,
standard KF applies unified observation modeling across sensors, neglecting their distinct characteristics and
reducing estimation accuracy. In contrast, the Parallel Kalman Filter (PKF) framework allows for constructing
independent observers for each sensor, enabling separate filtering and fusion of estimation results. This not
only improves estimation precision but also enhances system robustness. PKF has been widely applied in
domains such as train state estimation (Wen et al., 2023), multi-target tracking, and autonomous navigation
(Liu et al., 2024; Xiong et al., 2020), demonstrating strong robustness and adaptability. To further enhance the
robustness of the Kalman filter in noisy and dynamic environments, various adaptive optimization methods
have been proposed in recent years by researchers both domestically and internationally. For example, Sun
improved the innovation-based adaptive Kalman filter by incorporating chi-square testing to dynamically adjust
measurement noise covariance and reject abnormal measurements, enhancing the stability and accuracy of
INS/GPS integration (Sun et al., 2022). Li developed a GA-LSTM-based framework that identifies the current
road surface condition in real time and dynamically adjusts the noise covariance matrices of the KF accordingly
(Shaohua Li et al., 2024). In another study, Li applied a particle swarm optimization (PSO) algorithm to
adaptively tune the environmental noise parameters of the KF, thereby improving its prediction accuracy (Li et
al., 2022). Although these methods have shown improvements in the adaptability of the KF to some extent,
they still suffer from several limitations, such as complex parameter tuning processes, insufficient real-time
performance, and limited robustness under highly variable environmental conditions.

Given the above, A slip ratio of tractor drive wheels online measurement based on Improved Mayfly
Algorithm-Parallel Kalman Filter (IMA-PKF) was proposed in this paper. The method adaptively adjusts filter
parameters via online estimation of noise covariance matrices and fuses multi-sensor data from tractor slid
ratio online measurement system through a parallel Kalman filtering framework. And it is possible to achieve
real-time, accurate and robust online measurement of the tractor slip ratio under complex plowing conditions.

MATERIALS AND METHODS
Tractor Slip Ratio Measurement System and Modeling

The system state model characterizes the dynamic behavior of the tractor slip ratio measurement
system. In this study, the sideslip angle is not considered, and only longitudinal slip is taken into account. The
system state includes the actual vehicle speed, the longitudinal acceleration of the vehicle body, and its rate
of change, x(k) is defined as:

x(k) =[v, (k) a,(k) a, (k) v, (k) a,(k) a, (k)]" (1
where: v.(k) denotes the actual vehicle speed at time step &, m/s, a.(k) is the vehicle body acceleration, m/s?;
a.’'(k) represents the rate of change of the acceleration, m/s®, v,(k) is the theoretical vehicle speed, m/s, a,(k)

denotes the theoretical acceleration, m/s?, and a,’(k) is the rate of change of the theoretical acceleration, m/s>.
k is the discrete-time index, and the superscript T denotes the matrix transpose.

The linear system state transition equation is given by:
x(k+1)=A-x(k)+w(k) 2
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interval, w(k) is zero-mean Gaussian white noise with a covariance matrix @, and denotes the uncertainty in
the system.

To improve the estimation accuracy of the tractor drive wheel slip ratio, a Parallel Kalman Filter (PKF)
structure is adopted, consisting of two independent observers, Z, and Z,, which process measurements from
Global Navigation Satellite System (GNSS), photoelectric encoders, and the Inertial Measurement Unit (IMU),
respectively. The PKF approach enables separate local estimations at each observer node using its own
sensor data, and these local estimates are subsequently fused to obtain a global state estimate (Hashemipour
et al., 1988). The final optimal estimate is obtained through weighted fusion of the two observers. The
observation vector Z,(k) and Z,(k) are defined as:

Z,(k) = [v,o (k) ae (k) 0 v, (k) a,, (k) 0"
Z, (k) = [vye (k) a, (k) 0 v, (k) a,, (k) O]

where, v.(k) denotes the actual vehicle speed measured by the encoder, m/s, az.(k) is the measured
acceleration signal of the vehicle body, m/s?, v.(k) represents the theoretical vehicle speed measured by the
encoder, m/s, a.(k) is the acceleration signal measured at the drive wheel, m/s?, and v,(k) denotes the actual
speed measured by the GPS, m/s.

The observation model is given by:

Zl.(k):H-Xi(k)+yi(k) i=1,2 4>
where, H=diag(1, 1, 0, 1, 1,0) is the observation matrix, and the measurement noise yi(k) is zero-mean Gaussian

white noise with a covariance matrix R:.
The update process of the parallel Kalman filter can be divided into the following steps:

3

X (klk=1)=A4-X,(k-1]k-1) (5)
P(k|k-1)=A-P(k-1]k-1)4" +Q(k-1) (6)

K, (k)=P,(k|k=1)-H" [H-P(k| k1) H' +R,(k+1)] (7

P (k|k)=[1-K,(k)-H]-P,(k|k-1) (8)

X, (k|k)= X, (k|k=1)+ K, (k)| Z, (k) - H- X, (k| k-1)] (9

The state estimates from the two filters are fused through weighted averaging to obtain the global
estimated state X _(x | 4):

X, (k| k) =W, - X, (k| k)+W, - X, (k| k) (10)

where, X(k|k—1) denotes the predicted state at time step & based on information available up to time -1, while
)A(,-(k|k) represents the updated estimate at time step k after incorporating the measurement at time k. Pi(k|k-1)
is the a priori estimation error covariance matrix, and P,(k|k) is the a posteriori estimation error covariance
matrix. Ki(k) represents the Kalman gain matrix. W, and W, represent the weighting matrices assigned to the
two local Kalman filters during the state fusion process. These weights are determined based on the inverse
of the corresponding a posteriori error covariance matrices. The weighting expression is defined as:

W=+ Pli=12.

IMA-PKF Algorithm

Real-time tractor slip ratio estimation often relies on the fusion of multi-source sensor data, where the
characteristics of measurement and process noise tend to be nonlinear and time-varying. These noise sources
critically affect the accuracy of Kalman filter estimation. Conventionally, the selection of noise covariance
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matrices Q and R depends on empirical tuning, trial-and-error methods, or offline experiments. However, such
approaches assume prior statistical knowledge of the noise characteristics, which may not be valid in dynamic
field conditions. Inappropriate choices of @ and R can lead to sluggish filter responses or even divergence of
the estimation. To enhance adaptivity and robustness, this study introduces a mayfly algorithm-based
approach to dynamically optimize the noise covariance matrices in the Kalman filter. The algorithmic framework
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Fig.1 - IMA-PKF Algorithm Flowchart

Improved Mayfly Algorithm

The Mayfly Algorithm (MA) is a swarm intelligence optimization method inspired by the social behavior
of mayflies (Lizarraga et al., 2025, Zervoudakis & Tsafarakis, 2020). It features good population diversity and
strong local search ability, with high extensibility for domain-specific adaptations. However, MA often suffers
from weak global exploration in early stages and reduced solution accuracy and stability in later stages, leading
to premature convergence or entrapment in local optima. To overcome these drawbacks, this study introduces
improvements in population initialization and the search mechanism.

(1) Good Point Set Initialization Strategy

The initial position of each mayfly individual refers to a point in a D-dimensional search space and is
expressed as a vector of real-valued decision variables. Specifically, the position of the i-th individual is defined

as x' =[x!,x?,..,x"], where x* denotes the value of the k-th coordinate (k = 1, 2, ..., D) of the i-th mayfly

individual (i = 1, 2, ..., N), D is the problem dimension, and N is the population size. Each coordinate is a
dimensionless variable representing a component of the optimization solution.
The initial positions are generated using the following formula:

(1

where a; and b; are the lower and upper bounds of the &-th dimension, and rand() is a uniform random number
generator that produces values in the interval [0, 1].

Although the initial positions are generated using uniform random sampling within the defined bounds
of the search space, the resulting distribution of individuals may still be uneven. As illustrated in Fig. 2(a), such
randomness can lead to poor space utilization and a higher likelihood of premature convergence to local
optima. To overcome this limitation, a good point set initialization strategy is introduced to improve the
uniformity of the population distribution. The improved initialization method is defined as follows:

X =a +rand (b, —ay )
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X :ak+{Bz(k)}(bk_ak) (12)
where P,(k) represents the good point set.

As illustrated in Fig. 2(b), the initialization method based on the good point set effectively avoids the

randomness and local clustering inherent in traditional random initialization, thereby enhancing the global
search capability of the MA.
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Fig. 2 - Initialization of mayfly
(a)Random Initialization; (b)Good Point Set Initialization

(2) Lens Imaging-Based Opposition Learning Strategy

To mitigate premature convergence and local optima entrapment in the mayfly population, this study
introduces a lens imaging-based opposition learning strategy (Yu et al., 2024). aimed at enhancing population
diversity and expanding exploration of the solution space.

This strategy is inspired by the optical imaging principle of a convex lens. Considering a bounded search
interval [/b, ub], there exists an individual P with a height of h, whose projection on the X-axis is denoted by X
(which represents the current global optimal solution). Let the reference point O be the midpoint of the interval,
and a convex lens with focal length F is placed at O. According to the principle of convex lens imaging, the
individual P is projected through the lens to form an inverted image P*, with height #* and a projection on the
X-axis denoted as X*. Based on convex lens imaging theory, the following relationship can be established:

(Lib-l—lb)/z—X . (13
X —(ub+lb)/ 2
where, 1 is the scaling factor, 77 = hh* .
The opposition point can be computed as:
X*:ub+lb+ub+lb_£ (14)
2 2 n
By adjusting the scaling factor n, the opposition solution can be dynamically varied, thereby enhancing
the algorithm's local exploitation capability. In conventional lens imaging-based opposition learning strategies,
n is constant, which limits the ability to effectively expand the population's search range. To address this

limitation, this study introduces a Logistic chaos-based dynamic scaling strategy, in which the adaptive chaotic
scaling factor is calculated as:

17 = Thnin +(77max _nmin)'xt (15)
where x; is a dynamic value generated by the Logistic chaotic map, updated as: x:1=r-x,(1- x;), The index ¢
denotes discrete time steps and takes integer values ¢ = 0,1,2,..., N, where N is the total number of iterations.
Here, r is the chaos control parameter, set to 4, and x,€(0,1).

A greedy selection mechanism is further introduced to evaluate and retain improved individuals

generated through the opposition learning process. The mathematical model of the greedy selection is
expressed as:
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X', [0z f(X)
X, fOO<fX)
where f{ ) denotes the fitness function that quantifies the quality or objective value of an individual solution
and evaluates the performance level of each candidate solution X under the optimization objective.

Xnew(t)={ (16)

Noise Adaptation Based on the Improved Mayfly Algorithm

In the Parallel Kalman Filter (PKF), the process noise covariance matrix @ and the measurement noise
covariance matrix R are critical parameters that directly affect the accuracy and stability of state estimation.
However, in practical applications, conventional Kalman filtering often suffers from inaccurate modeling and
unknown or time-varying noise statistics, making it difficult to determine appropriate values for these matrices.
Traditional Kalman filters typically assume that @ and R are constant, but such an assumption often fails to
meet the requirements of real-world scenarios. Inappropriate settings may result in sluggish filter response,
increased estimation bias, or even filter divergence. To ensure unbiased estimation and filter stability, it is
essential to select appropriate values for the process and measurement noise covariance matrices. Therefore,
a dynamic adjustment mechanism based on the Improved Mayfly Algorithm (IMA) is introduced to optimize Q
and R in real time, thereby enhancing the adaptive capability of the Kalman filter.

Let @, and R, denote the process noise covariance and measurement noise covariance matrices actually
used by the Kalman filter, respectively:

{Q“ =0+A0 17

R,=R+AR

where @ and R are the true process and measurement noise covariance matrices, and AQ and AR represent
the deviations of the applied matrices from the true values.

The True Mean Squared Error (TMSE) and the Filter Calculated Mean Squared Error (FMSE) are
typically introduced as evaluation metrics When TMSE closely matches FMSE, the estimated covariances Q,
and R, are more consistent with the true noise characteristics Q and R. However, due to the fact that the noise
covariance is generally unknown or there is model bias, it is quite difficult to directly calculate the TMSE and
FMSE. So, the Filter Calculated Prediction Mean Squared Error (FPMSE) and the True Prediction Mean
Squared Error (TPMSE) are introduced as alternative indicators to estimate the system errors online, providing
a practical basis for evaluating filter performance under unknown noise conditions (Ge et al., 2023; Ge et al.,
2016). The TPMSE is calculated as follows:

m m 1 :
Py =H, (AquvHAT J"Qk,k—l)HkT + Ry zzzel‘e; (18)
i=1

where ex denotes the innovation at time step &, ¢, = Z(k)—H~X(k | k—l) )
The FPMSE is calculated as follows:
P =H.Pj H +R (19)

To ensure optimal filter performance, the fitness function of the improved mayfly algorithm is defined as
the minimum 2-norm of the difference between FPMSE and TPMSE:

£ (k) =min(|| B} =P} ||, (20)

Online measurement system of tractor slip ratio

In order to verify the effectiveness and feasibility of the proposed algorithm, an online measurement
system was established, which was installed on the tractor ploughing unit as shown in Fig.3.

The system primarily consists of photoelectric encoders, a combined inertial navigation mobile station
(including GNSS and IMU), a laser ranging sensor, an inclination sensor, a USB-6210 data acquisition card,
and an upper computer. The actual vehicle speed was estimated by fusing the front wheel speed measured
by the encoder with the GNSS speed. The theoretical vehicle speed was derived from the rear wheel speed
captured by the encoder, reflecting the motion of the driven wheel. The upper computer was used to deploy
the algorithm proposed in this paper, and the platform was later used for field experiments to verify its
effectiveness under real-world working conditions. The system integrates multi-sensor fusion technology and
real-time computing capabilities, providing a solid foundation for the deployment of the proposed algorithm and
the evaluation of its measurement performance under complex plowing conditions.
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Fig. 3 - Tractor Slip Ratio Acquisition System

RESULTS AND DISCUSSIONS
Simulation Analysis

To verify the effectiveness of the proposed algorithm, simulated measurement signals were generated
in MATLAB based on typical plowing operation conditions. The tractor working speed was assumed to vary
within the range of 1 to 3 m/s, which covers the majority of practical plowing speeds. A portion of the simulated
signals is shown in Fig. 4. All signals were corrupted with zero-mean Gaussian white noise with a standard
deviation equal to 5% of the signal amplitude. The measurement noise covariance matrices were defined as:
Ri=diag(0.12, 0.062, 0, 0.112, 0.062, 0), R>=diag(0.132, 0.06% 0, 0.112, 0.062, 0). The simulation time was 30 s with a
sampling frequency of 50 Hz. KF, Particle Swarm Optimization-based Parallel Kalman Filter (PSO-PKF), MA-
PKF, and the IMA-PKF were selected to estimate the slip ratio. The simulation comparison results are shown
in Fig. 5.
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Fig. 5 - Comparison of Slip Ratio Signals from Different Algorithms
(a)KF; (b)PSO-PKF: (c)MA-PKF; (d)IMA-PKF

As shown in Fig. 5, there are significant differences in slip ratio estimation accuracy among 4 algorithms.
The mean absolute errors (MAE) of KF, PSO-PKF, MA-PKF, and IMA-PKF are 0.0714, 0.0433, 0.0348, and
0.0202, respectively, while the corresponding root mean squared errors (RMSE) are 0.0848, 0.0567, 0.0423,
and 0.0214. Compared with the original KF algorithm, both MAE and RMSE are reduced in PSO-PKF, MA-
PKF, and IMA-PKF. Specifically, the MAE of MA-PKF and PSO-PKF is reduced by 39.3% and 51.3%,
respectively, and the RMSE is reduced by 33.1% and 50.1%. The IMA-PKF algorithm achieves the best
performance, with MAE and RMSE reduced by 71.7% and 74.8%, respectively, relative to KF, demonstrating
the most effective error suppression. From the results, although the slip ratio estimated by the KF algorithm
generally follows the trend of the reference signal, it exhibits noticeable fluctuations at certain time. In contrast,
the estimates from the MA-PKF and PSO-PKF algorithms are smoother and more stable, with reduced errors
and more uniform error distribution. The IMA-PKF algorithm yields the most accurate estimation results,
effectively suppressing noise and providing higher measurement precision.

To further assess the anti-interference robustness of the IMA-PKF under diverse and realistic
perturbation scenarios, a Monte Carlo simulation comprising 100 independent trials was conducted. In each
trial, 5 transient disturbances were superimposed onto the actual vehicle speed signal to emulate unpredictable
field conditions. These disturbances were constructed using half-sine waveforms with randomly sampled
parameters. Specifically, injection times were drawn from Gaussian distributions centered at 6 s, 10 s, 15 s,
20 s, and 25 s, while amplitudes and frequencies were sampled from uniform distributions within +0.4-0.8 m/s
and 4.5-5.5 Hz, respectively. Each disturbance lasted for 0.2 s. This randomized design was intended to mimic
non-stationary and transient noise sources such as terrain shocks or sporadic sensor anomalies. All four
algorithms were tested under these conditions to evaluate their estimation consistency and robustness.

Arepresentative example of the disturbed GPS-measured vehicle speed signal is shown in Fig. 6, while
Fig. 7 compares the resulting slip ratio estimation errors under the 100 Monte Carlo trials.
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176



Vol. 77 No. 3/ 2025 INMATEH - Agricultural Engineering

The mean absolute error (MAE) values for KF, PSO-PKF, MA-PKF, and IMA-PKF were 0.0723, 0.0721,
0.0438, and 0.0282, respectively; the corresponding RMSE values were 0.0795, 0.0865, 0.0589, and 0.0359;
and the maximum absolute errors reached 0.6262, 0.3977, 0.2701, and 0.1464, respectively. These results
indicate that while PSO-PKF improved robustness over the conventional KF, it remained sensitive to severe
disturbances. MA-PKF exhibited better stability and denoising capacity, but IMA-PKF consistently delivered
the most accurate and reliable performance across all trials, demonstrating superior resistance to transient
interference and enhanced estimation robustness.

Field Experiment Results and Discussion

To validate the performance and reliability of the proposed algorithm, field experiments were carried out
under actual plowing conditions at the Technology Demonstration Base of Shandong Agricultural University.
The experimental setup included the Taishan-1404A tractor and 1LF-435 reversible plough, and the main
parameters are summarized in Table 1. During the experiment, RTK-GNSS was employed as the reference
measurement device to validate the effectiveness of the proposed algorithm in estimating the tractor slip ratio.
The laser ranging sensor and inclination sensor were used to monitor the tillage depth. To ensure consistent
operation and realistic evaluation across varying working depths, the throttle opening was kept constant during
each test, and the resulting average plowing speeds were approximately 6.48 km/h (15 cm), 5.83 km/h (20
cm), 5.44 km/h (25 cm), and 5.04 km/h (30 cm), respectively.

Table 1
Main Parameters of the Experimental Tractor and Plough
Equipment Name Parameter Value
Overall Dimensions (LxWxH) [mm] 5000%x2510%3115
Wheelbase [mm] 2550
Taishan-1404A tractor Rated Power [kW] 103
Maximum Drawbar Pull [KN] 28
Minimum Operating Weight [kg] 5260
Overall Dimensions (LxWxH) [mm] 4000%x1600x1850
Total Weight [kg] 1470
1LF-435 reversible plough Number of Plough Bodies 4x2
Working Width per Share [mm] 350
Maximum Working Depth [cm] 35

The experimental field measured 200 m in length and 300 m in width. The length of each ploughing
operation in the experiment was approximately 200 m. Since the field had been previously plowed, compaction
treatment was applied to meet the experimental requirements. To investigate the algorithm’s performance
under varying tillage depths, the field was divided into four subplots, each assigned a specific working depth:
15 cm, 20 cm, 25 cm, and 30 cm. During the experiments, the tractor was driven in a straight line with the
differential lock engaged. Once the reversible plow reached the target depth, the throttle opening was
maintained at a constant level. The field tests were conducted under ambient temperatures ranging from 12 °C
to 18 °C, with weather conditions transitioning from light rain to overcast skies. As shown in Fig. 8, all field
experiments were carried out under realistic tillage conditions in the prepared test area.

The advantages of IMA-PKF over PSO-PKF and MA-PKF have been verified through simulation
experiments. Due to the limitations of the plot size and the complexity of the algorithm calculation, only the
IMA-PKF algorithm and the original KF algorithm were selected for comparison.

Fig.9 presents the comparison of tractor slip ratio estimation results under 4 plowing conditions using
the IMA-PKF and KF algorithms. The measured values and reference values exhibit similar trends, indicating
that the IMA-PKF algorithm can accurately track the dynamic changes in slip ratio. The algorithm provides
estimates that closely match the actual values and demonstrates good stability. It is worth noting that the
sudden increase in slip ratio observed in Fig. 9(c) during the later stage of the operation is likely caused by
external disturbances, such as the plow encountering rocks during the tillage process. The mean absolute
error (MAE) and root mean squared error (RMSE) of the slip ratio estimated by both the IMA-PKF and KF
algorithms are shown in Fig. 10.
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Fig. 9 - Experimental Slip Ratio Estimation Curves
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Fig. 10 - Statistical Results of Experimental Data

As shown in Fig. 10, under all four tillage depth conditions, the proposed IMA-PKF algorithm
demonstrates significantly improved performance compared to the conventional KF algorithm. Specifically, the
MAE of the IMA-PKF algorithm is reduced by 33.95%, 34.35%, 36.29%, and 27.47%, respectively, while the
RMSE is reduced by 34.67%, 34.42%, 37.06%, and 22.60%, respectively. These experimental results confirm
that the IMA-PKF algorithm exhibits superior measurement performance under complex operating conditions
and can effectively improve the accuracy of tractor slip ratio estimation. While the proposed IMA-PKF algorithm
exhibits strong performance under the tested conditions, further validation is needed to assess its general
applicability across various soil types, equipment configurations, and operating scenarios, particularly in highly

resistant or hard soils.
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CONCLUSIONS

(1) A tractor slip ratio online measurement method was proposed in the paper. This method is based on
the improved firefly algorithm optimized parallel Kalman filter (IMA-PKF). By integrating data from multiple
sensors and adaptively estimating noise, this method can dynamically adapt to changes in noise and achieve
online accurate measurement of tractor slip ratio under different plowing conditions.

(2) Simulation results show that under non-interference conditions, the IMA-PKF algorithm achieves a
root mean squared error (RMSE) of 0.0214, which is 74.8% lower than that of the conventional KF algorithm,
and it also outperforms PSO-PKF and MA-PKF in terms of estimation accuracy. In terms of anti-interference
capability, the IMA-PKF algorithm maintains the lowest estimation error even after the introduction of
disturbance points, with an RMSE of 0.0359, demonstrating superior stability and robustness.

(3) A set of online measurement system for tractor slip ratio was established. And field experiments have
confirmed that the estimated slip ratio measured by IMA-PKF are highly consistent with the reference values,
with the maximum error being only 1.94% and the deviation being less than 2%. Under different tillage depths,
compared with KF, IMA-PKF reduces the average absolute error (MAE) and root mean square error (RMSE)
by up to 36.29% and 37.06% respectively, demonstrating its reliability under complex conditions and providing
support for the improvement of tractor performance.

In future work, the test scope will be expanded to include different soil conditions such as harder or more
resilient soils, various humidity levels, as well as different tractor types and farm implements. This will help
verify the reliability and adaptability of the IMA-PKF algorithm under complex operating conditions.
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